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RESEARCH ARTICLE
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Summary: The vertebrate kidney plays an essential role
in removing metabolic waste and balancing water and
salt. This is carried out by nephrons, which comprise a
blood filter attached to an epithelial tubule with proxi-
mal and distal segments. In zebrafish, two nephrons
are first formed as part of the embryonic kidney (pro-
nephros) and hundreds are formed later to make up the
adult kidney (mesonephros). Previous studies have
focused on the development of the pronephros while
considerably less is known about how the mesoneph-
ros is formed. Here, we characterize mesonephros
development in zebrafish and examine the nephrons
that form during larval metamorphosis. These neph-
rons, arising from proliferating progenitor cells that
express the renal transcription factor genes wt1b,
pax2a, and lhx1a, form on top of the pronephric tubules
and develop a segmentation pattern similar to proneph-
ric nephrons. We find that the pronephros acts as a
scaffold for the mesonephros, where new nephrons
fuse with the distal segments of the pronephric
tubules to form the final branching network that char-
acterizes the adult zebrafish kidney. genesis 53:257–
269, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: kidney; pronephros; nephron

INTRODUCTION

The vertebrate kidney contains functional units called
nephrons that remove metabolic waste and maintain
body fluid volume and composition. Nephrons contain
a blood filter called the glomerulus, which integrates

with the vasculature, and a segmented epithelial tubule
that modifies the filtrate (Hoenig and Zeidel, 2014). In
mammals, three progressively more complex kidney
structures develop during embryogenesis (the proneph-
ros, mesonephros, and metanephros). The mammalian
pronephros is vestigial and consists of bilateral nephric
ducts that extend down the trunk to the cloaca and
induce the formation of the mesonephros during this
transit. Mesonephric nephrons are also largely rudimen-
tary and eventually degenerate. Near the cloaca, a ure-
teric bud (UB) protrudes from the nephric duct, and
reciprocal interactions between the UB and the
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neighboring metanephric mesenchyme initiates devel-
opment of the metanephros (the definitive adult kid-
ney). This involves reiterative elongation and branching
of the UB, which becomes the collecting duct system of
the kidney, and the induction of metanephric nephrons
from the mesenchyme. Nephrogenesis follows a stereo-
typical pattern: a small cluster of mesenchymal cells
(pretubular aggregates) epithelialize into a ball (renal
vesicle) that fuses with the collecting duct tree and
elongates via comma and S-shaped body stages into a
nascent nephron (Dressler, 2006). During this process,
the nephron progenitors become patterned along the
proximodistal axis of the nephron into glomerular fates
(podocytes and parietal epithelial cells), and the differ-
ent segment fates of the tubule (proximal, intermediate,
and distal tubule epithelial cells). Podocytes recruit
angioblasts, wrap around the resulting blood vessels,
and contribute to the sieve-like blood filter of the glo-
merulus (Costantini and Kopan, 2010).

Only the pronephric and mesonephric kidneys
develop in zebrafish (Davidson, 2011). The pronephros
is fully functional and essential for survival due to its
role in osmoregulation in the free-swimming embryo.
Structurally, the pronephros comprises bilateral neph-
rons that are fused rostrally at their glomeruli and again
caudally at the cloaca (Drummond, 2005). Like mamma-
lian nephrons, the pronephric tubules can be divided
into functionally distinct segments. Proximally, there
are two segments called the proximal convoluted
tubule (PCT) and the proximal straight tubule (PST),
while distally there are two segments called the distal
early (DE) and the distal late (DL) (Wingert and
Davidson, 2008).

Zebrafish undergo a postembryonic metamorphosis
from larva to juvenile starting around 10 days postfertili-
zation (dpf). This involves changes to many organs and
tissues, including the formation of scales and fins, and
remodeling of the gonads, gut, and nervous system
(Parichy et al., 2009). Formation of the mesonephros
also occurs during this transition, presumably to cope
with higher osmoregulatory demands arising from
increased body mass (Diep et al., 2011; Zhou et al.,
2010). Mesonephric nephrons first form on top of, and
fuse with, the pronephric tubules. Early events of meso-
nephrogenesis include the appearance of renal progeni-
tor cells at the caudal end of the swim bladder that are
fluorescently labeled in the Tg(lhx1a:eGFP) transgenic
line (Diep et al., 2011). These cells aggregate into clus-
ters and epithelialize into renal vesicle-like bodies that
elongate into nascent nephrons and fuse with the
underlying pronephric tubule.

The mesonephros remains as the permanent adult
zebrafish kidney with an ongoing capacity for new
nephron formation during normal growth as well as in
response to injury (Diep et al., 2011; Zhou et al.,
2010). However, not much is known about how meso-

nephric nephrons form or whether they have a similar
segmentation pattern as pronephric nephrons. In this
report, we examine in detail the development of the
zebrafish mesonephros. We show that mesonephric
nephrons arise from proliferating wt1b1 cell clusters
that first appear during metamorphosis. Mesonephric
branching (the site of nephron formation and fusion)
occurs at the two distal (DE and DL) segments of the
pronephros. Analyses of the tubular segmentation pat-
tern indicate that mesonephric nephrons have a similar
proximodistal organization to pronephric nephrons.
Overall, our results show that the distal pronephros
serves as a scaffold for the developing mesonephros
and that these two kidney structures integrate to form
the definitive mesonephric kidney.

RESULTS

The First Functional Mesonephric Nephron
Forms at the 6 mm Stage

To better characterize the development of the meso-
nephros we carried out histological analyses of larvae at
the 5 mm stage (!11 dpf), around the time when the
first nephron is reported to form (Diep et al., 2011;
Zhou et al., 2010). As previously reported, we found a
single cluster of cells on top of one of the pronephric
tubules near the caudal end of the swim bladder where
the first mesonephric nephron forms (Fig. 1A arrow).
These cells stain prominently with methylene blue and
closely resemble the basophilic clusters reported in
adult goldfish kidneys (Reimschuessel et al., 1990). By
the 5.5 mm stage (!13 dpf), a rudimentary basophilic
tubule is found in the caudal swim bladder region, con-
sistent with being derived from the cluster observed at
the 5 mm stage (Fig. 1B arrow). This nascent nephron
has not yet fused with the lumen of the underlying pro-
nephric tubule, suggesting it is not yet fully mature. To
determine when this first mesonephric nephron
becomes functional, we injected a 40 kDa fluorescent
dextran (dex-FITC) tracer into the circulation of the lar-
vae. Nephrons integrated into the circulatory system
will filter the dex-FITC and accumulate the tracer in the
proximal tubule segments (Diep et al., 2011). Larvae at
the 6 mm stage, but not at the 5.5 mm stage, showed
uptake and accumulation of the tracer (Fig. 1C,D
arrows). Taken together, these results indicate that the
first functional mesonephric nephron forms between
the 5.5–6 mm stages, most likely from a cluster of baso-
philic nephrogenic cells that arise on the pronephric
tubules at the 5 mm stage.

Nephrogenic Clusters Contain Dividing
Cells and Express wt1b

To investigate the growth of the basophilic clusters,
which we anticipated is essential for nephron
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formation, we injected the thymidine analog bromo-
deoxyuridine (BrdU) into the circulation of larvae.
Serial sagittal sections were alternately stained with
hematoxylin and eosin (H1E) and by immunohisto-
chemistry with antibodies against BrdU, and revealed
that the basophilic clusters contain many BrdU1 cells
(Fig. 2A,B arrows). In addition, we noted that the clus-
ters appear to invade into the pronephric tubule, pre-
sumably as part of the morphological process
underlying fusion of the nascent nephron with the pro-
nephric tubule. A closer examination of this process by
live imaging of Tg(lhx1a:eGFP)/Tg(cdh17:mCherry)
double transgenic larvae revealed that the distalmost
cells of the nascent nephron appear to invade and then
retract over a four-day period, followed by a downregu-
lation of the lhx1a:eGFP transgene (Fig. 3A). A similar
downregulation of the endogenous lhx1a gene is also
observed (Fig. 3B).

We next examined adult kidneys for the presence of
basophilic clusters, given that mesonephric nephron
formation continues throughout adulthood (Diep et al.,

2011; Zhou et al., 2010). While clusters were rarely
detected in tissue sections from undamaged fish kid-
neys (data not shown), we readily detected basophilic
BrdU1 clusters in regenerating kidneys following injec-
tion of the nephrotoxin gentamicin (Fig. 2C,D arrows).
To demonstrate that the basophilic clusters correspond
to the wt1b-expressing clusters observed in previous
studies, we induced kidney damage in the
Tg(wt1b:GFP) transgenic line (Perner et al., 2007) and
alternately stained serial sections with H1E and by
immunohistochemistry with anti-GFP antibodies. This
analysis confirmed that the basophilic clusters express
wt1b and likely comprise nephron progenitors involved
in both mesonephros development and adult meso-
nephros regeneration (Fig. 2E,F arrows).

Characterization of Mesonephros Development

Following the formation of the first mesonephric
nephron, additional nephrons arise in more caudal loca-
tions along the pronephric tubules as well as rostrally in

FIG. 1. Formation of the first mesonephric nephron. A: A cross section of a 5 mm larva stained with methylene blue and basic fuchsin
shows a basophilic cluster sitting on top of the PT (arrow) at the caudal end of the swim bladder (white asterisk). The red line indicates the
region of the cross sections for A-B. B: A cross section of a 5.5 mm larva stained similarly to A shows a nascent basophilic tubule making
contact with the PT (arrow), but its lumen has not yet fused with the PT lumen. C: Injection of 40 kDa dextran-FITC into a 5.5 mm larva indi-
cates that the nascent tubule is not yet functional and did not accumulate the fluorescent tracer (arrow). D: The tubule of a 6 mm larva did
accumulate the fluorescent tracer (arrow), indicating that the first mesonephric nephron is functional at the 6 mm stage. PT: pronephric
tubule; SB: swim bladder; dashed lines demarcate the swim bladder from the pronephric tubule.
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FIG. 3. Invasion of the mesonephric nephron into the pronephric tubule. A: A live time-course of Tg(lhx1a:eGFP)/Tg(cdh17:mCherry) dou-
ble transgenic larvae shows that the nascent nephron infiltrates the underlying PT (middle panel), followed by downregulation of lhx1a:eGFP
expression. B: Downregulation of endogenous lhx1a expression was also observed in nascent nephrons. PT: pronephric tubule; t: time; h:
hours.

FIG. 2. The developing and regenerating mesonephros contain proliferating basophilic clusters that express wt1b. A–D: Larvae (A,B) and
adult fish with kidney damage (C,D) were injected with BrdU and serial sections were alternately stained with H1E and anti-BrdU by immu-
nohistochemistry. This shows that the developing mesonephros (A,B) and the regenerating adult mesonephros (C,D) both have basophilic
clusters with BrdU1 cells (arrows). E,F: Tg(wt1b:GFP) transgenic fish with kidney damage were also injected with BrdU and stained similarly
to C,D. This shows that basophilic clusters in the regenerating kidney also express wt1b-GFP (arrows). PT: pronephric tubule; MT: meso-
nephric tubule; H1E: hematoxylin and eosin.
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the region of the pronephric glomerulus (Diep et al.,
2011; Zhou et al., 2010). To better characterize the for-
mation of these nephrons we performed a time-course
analysis of cdh17 expression by whole mount in situ
hybridization. At the 5 mm stage, cdh17 transcripts
mark the pronephric tubules and not the basophilic
clusters (Fig. 4A,E). At the 5.225.5 mm stage, expres-
sion of cdh17 becomes detectable in the first meso-
nephric nephron in presumptive tubular but not
glomerular cells (Fig. 4B white arrow and inset). At the
6.5 mm stage, cdh17 transcripts are found in several
new nephrons that form in more caudal positions along
the pronephros (Fig. 4C white arrows). At this stage,
new nephrons are also detected near the pronephric
glomerular region (Fig. 4C white arrowhead and inset).
By the 8 mm stage, several more new nephrons are
observed caudally (Fig. 4D white arrows) and rostrally
(Fig. 4D arrowheads). As the larvae reach the 9 mm
stage (!30 dpf), the young mesonephros (Fig. 4F,G)
morphologically resembles the fully mature adult (!90
dpf) mesonephros (Fig. 4H), consisting of the “head,”
“trunk,” and “tail” regions.

Consistent with each new nephron arising from a
wt1b1 basophilic cluster, we found that wt1b tran-

scripts in larvae at the 5.225.5 mm stages labeled 1-2
clusters of cells on the top of the pronephric tubules
(Fig. 5A arrows, D). At the 8 mm stage, the number of
wt1b1 clusters increased to 3–4 in the future head kid-
ney region and 2–4 in the trunk and tails regions
(n 5 5, Fig. 5B arrowheads). Similar expression pat-
terns were also found for other early acting renal tran-
scription factors, pax2a and lhx1a (Fig. 5E,F, and data
not shown). No regional differences in the expression
of wt1b, pax2a, or lhx1a were found in the clusters
that formed in the head, trunk, or tail regions of the
developing mesonephros, suggesting a common pro-
cess of nephrogenesis occurs throughout the kidney.
Transcripts for wt1b were additionally found in pre-
sumptive glomerular cells of the nascent nephrons,
most likely podocytes, as previously described (Diep
et al., 2011). The expression pattern of the podocyte
marker nephrin (nphs1) showed a time-course that
paralleled that of cdh17 and wt1b (Fig. 5C white
arrows and arrowheads) with the earliest formed neph-
rons showing enlarged mature glomerular structures
(Fig. 5G arrow) while the most recently formed neph-
rons displaying compacted immature glomeruli (Fig.
5H arrow).

FIG. 4. Mesonephric expression of the pan-tubule cdh17 marker. A–G: Whole mount in situ hybridizations of larvae show that the first
mesonephric nephron expresses cdh17 at the 5.2–5.5 mm stage (B white arrow and inset). Additional nephrons appear later in both caudal
and rostral positions relative to the first nephron (C,D: white arrows, arrowheads, and inset). The inset in C is a magnified image of the
arrowhead. At the 9 mm stage (!30 dpf), the developing mesonephros has three distinct regions (head, trunk, and tail; F,G), resembling the
adult mesonephros in H. H: The mesonephros of a sexually mature adult fish (90 dpf) has the head, trunk, and tail regions. SB: swim blad-
der; G: glomerulus.
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FIG. 5. Mesonephric expression of early and mature nephron markers. A,B: Whole mount in situ hybridizations of larvae show that the
early acting transcription factor wt1b is expressed in clusters of nephron progenitor cells (arrows and arrowheads). C: The mature glomeru-
lar marker nphs1 is expressed in mesonephric glomeruli (white arrows and arrowheads) in addition to being maintained in the PG (black
arrow). D–F: Magnified images of nephron progenitor clusters expressing the early acting markers wt1b, pax2a, and lhx1a. G–H: Magnified
images showing a mature glomerulus (G) and an immature presumptive glomerulus (H) expressing nphs1 (arrows). PG: pronephric
glomerulus.
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Mesonephric Nephrons Express Segment-Specific
Markers and Fuse at the DE and DL Segments of
the Pronephros

We previously showed that zebrafish pronephric
nephrons are divided into two proximal and two distal
segments (Wingert et al., 2007). To determine whether
mesonephric nephrons show a similar segmentation
pattern, we examined the expression of the segment-
specific markers slc20a1a (PCT), trpm7 (PST), slc12a1
(DE segment), and slc12a3 (DL segment) during meso-
nephrogenesis. In addition, this analysis allowed us to
investigate, which of the pronephric segments were
fusing with the mesonephric nephrons.

Transcripts encoding slc20a1a, trpm7, and slc12a1
were detected in mesonephric nephrons at the 6 mm
stage, initially in the first nephron and then sequentially
in the more caudal and then rostral nephrons, consist-
ent with the temporal pattern seen with cdh17, wt1b,
and nphs1 (Figs. 6–8; close-up views of the rostral
nephrons at the 8 mm stage are shown in Supporting
Information Fig. 1). Unexpectedly, expression of the DL

marker slc12a3 was not detected in the first nephron at
the 6 mm stage (Fig. 9A,B, dashed box) but began
appearing later, starting at the 8 mm stage (Fig. 9C–E,
red and blue arrows). Closer examination of the first
and rostral nephrons prior to the onset of slc12a3
expression showed that their DE segments fused
directly to the pronephric DE segment (Fig. 8C white
arrows, red arrowhead and inset, and D). However,
starting around the 8 mm stage, slc12a1 transcripts
downregulated in these nephrons near the junction
with the pronephros, presumably coinciding with the
initiation of slc12a3 expression (Fig. 8E, arrow). The
more caudal mesonephric nephrons were found to
form on top of the pronephric DL segment and fused
via short DL segments by the 8 mm stage (Fig. 9C blue
arrow, and E). By the 10-11 mm stage, no difference
was observed in the segmentation pattern of rostral and
caudal nephrons, with both showing PCT, PST, DE and
DL segments (data not shown). Taken together, these
findings demonstrate that mesonephric nephrons fuse
with the pronephric DE and DL segments and initially

FIG. 6. Expression of slc20a1a in the PCT. A–C: Whole mount in situ hybridizations of larvae show that the first mesonephric PCT
expresses slc20a1a at the 6 mm stage (B white arrow), with several more PCTs appearing at the 8 mm stage (C arrows). PCT: proximal con-
voluted tubule.
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develop the PCT, PST, and DE segments, with the DL
segment arising during later stages of nephrogenesis.
We also analyzed expression of gata3, which is
expressed in the distal terminus of the DL segment of
the pronephros during embryonic stages (Wingert
et al., 2007). The role of the gata31 segment is unclear
but it may act as a common collecting duct or ureter. In
support of the latter notion, expression of gata3 is not
observed in mesonephric nephrons (Fig. 10). A sche-
matic of the segmentation patterns of pronephric and
mesonephric nephrons is shown in Figure 11.

DISCUSSION

The zebrafish mesonephros undergoes neonephrogene-
sis throughout larval and adult life, making it a novel
model to study nephrogenesis and to investigate unique
mechanisms of kidney regeneration. However, our
understanding of how fish mesonephric nephrons
develop is very limited. It was previously reported that
the first zebrafish mesonephric nephron forms in
approximately two-week old larvae (5.2 mm) near the

level of the caudal swim bladder (Diep et al., 2011;
Zhou et al., 2010). Our data here show that this neph-
ron forms on top of the pronephric DE segment and
becomes functional by the 6 mm stage based on the fil-
tration of a fluorescent tracer. Additional nephrons are
progressively added during juvenile life, first caudal and
then rostral to the first-forming nephron. The cellular
source of mesonephric nephrons is likely clusters of
basophilic wt1b-expressing progenitor cells. Our previ-
ous data indicated that these clusters arise from the
aggregation of single cells marked by the lhx1a:eGFP
transgene that then go on to activate wt1b expression
(Diep et al., 2011). Our finding that the wt1b1 clusters
are proliferating extensively is consistent with our prior
observations that only 3-4 cells appear sufficient to initi-
ate cluster formation (Diep et al., 2011). As the cluster
grows, it epithelializes into a renal vesicle-like structure
(Diep et al., 2011). In mammals, nephron induction
involves a similar mesenchyme-to-epithelial transition
(MET) that is dependent on Wnt9b expression from the
ureteric epithelium (Carroll et al., 2005). It is not yet
known if a similar Wnt signal is operative during

FIG. 7. Expression of trpm7 in the PST. A–C: Whole mount in situ hybridizations of larvae show that the first mesonephric PST expresses
trmp7 at the 6 mm stage (B white arrow), with several more PSTs appearing at the 8 mm stage (C arrows). PST: proximal straight tubule.
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zebrafish nephrogenesis. However, the closely related
wnt9a gene is expressed in the distal segments of the
pronephros from 4 dpf and onwards, making this Wnt
an excellent candidate for inducing the MET of wt1b1

clusters (Curtin et al., 2011).
We found that the nascent mesonephric nephron

invades into the underlying pronephric tubule, presum-
ably as a part of the morphogenic process of nephron
fusion and the establishment of a contiguous lumen.

From live imaging of Tg(lhx1a:eGFP)/Tg(cdh17:
mCherry) larvae we found that the lhx1a:eGFP trans-
gene remains active in the invading cells during the
fusion process and then downregulates. A similar inva-
sive progression has been reported during mammalian
nephrogenesis with distal renal vesicle cells penetrating
the ureteric epithelium and entering the lumen of the
adjacent collecting duct (Kao et al., 2012). Mammalian
distal renal vesicle cells also express Lhx1 and because

FIG. 8. Expression of slc12a1 in the DE. A–C: Whole mount in situ hybridizations of larvae show that the first mesonephric DE forms on
top of the pronephric DE and expresses slc12a1 at the 6 mm stage (B arrowhead). At the 8 mm stage, several more DEs appear on top of
the pronephric DE (C white arrows) and pronephric DL (C white arrowheads), and in the rostral region of the pronephric DE (C red arrow-
head and inset). The inset is a magnified image of the red arrowhead at a different angle. D: A magnified image of a branch point between
the mesonephric DE (dashed line) and the pronephric DE. E: At the 8 mm stage, slc12a1 is downregulated at the junction point with the pro-
nephric DE. DE: distal early segment; DL: distal late segment.
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this transcription factor gene has been implicated as a
regulator of migration in other contexts (Winchell and
Jacobs, 2013), it raises the possibility that Lhx1 controls
a conserved program of invasive epithelial behavior
(Georgas et al., 2009; Kao et al., 2012).

We showed that the mesonephric nephrons that
form on the pronephric DE segment initially develop
only the PCT, PST, and DE segments, using the latter to
fuse with the pronephros. However, at later stages,

slc12a1 transcripts in these nephrons become downre-
gulated at the junction with the pronephric DE seg-
ment, around the time that the DL marker, slc12a3,
becomes expressed. This result suggests that the pat-
terning of the distal mesonephric nephron is dynamic
and raises the possibility that the DL segment arises
from the DE segment, perhaps as a result of transdiffer-
entiation. It will be interesting to ascertain whether the
appearance of slc12a3 expression corelates with when

FIG. 9. Expression of slc12a3 in the DL. A,B: Whole mount in situ hybridizations of larvae for the slc12a3 marker show that the first meso-
nephric nephron does not form a DL the 6 mm stage (B dashed box). C–E: At the 8 mm stage, both rostral and caudal nephrons express
slc12a3 and form on top of the pronephric DE (red arrows) and pronephric DL (blue arrows). D and E are magnified representations of rostral
and caudal nephrons at the 8 mm stage. DE: distal early segment; DL: distal late segment.
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the nascent nephron becomes functional, as this would
suggest that slc12a3 is being induced in response to
fluid flow and/or changes in salt composition.

Although the pronephros provides an essential func-
tion during larval life, our observations are consistent
with it transitioning into a scaffold for mesonephros for-
mation during metamorphosis. We hypothesize that the
pronephric DE/DL segments are the origin of the two
major collecting ducts that form along the midline of
the adult kidney (Diep et al., 2011; Zhou et al., 2010).
The adult mesonephros contains hundreds of nephrons
that all need to plumb into these major collecting ducts
(Diep et al., 2011; Zhou et al., 2010). We envision a
process in which the first wave of mesonephric neph-
rons fuse with the pronephros directly, forming
branches at the pronephric DE and DL segments but as
new DL segments form, these would fuse with subse-
quent waves. Reiterations of this process would eventu-
ally lead to the highly arborized network of nephrons
that is present in the adult mesonephros.

FIG. 10. Expression of gata3 in the pronephric CD. A–C: Whole mount in situ hybridizations of larvae show that gata3 is not expressed in
mesonephric nephrons at the 6 mm or 8 mm stage, but is expressed in a terminal segment of the pronephros. CD: presumptive collecting
duct or ureter segment.

FIG. 11. Schematic representation of pronephric and mesoneph-
ric nephrons. Pronephric nephrons are subdivided into glomerulus
(G), neck (N), proximal convoluted tubule (PCT), proximal straight
tubule (PST), distal early segment (DE), and distal late segment
(DL). Mesonephric nephrons initially fuse at the pronephric DE and
DL segments and eventually acquire a similar segmentation pat-
tern to pronephric nephrons. All nephrons drain via a common seg-
ment, possibly a collecting duct (CD) or ureter to the cloaca.
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In summary, our study has provided further insights
into the molecular and anatomical basis of zebrafish
mesonephros formation. Because zebrafish, but not
mammals, retain the ability to add new nephrons after
birth, it is hoped that a greater understanding of fish
nephrogenesis will help develop novel regenerative
therapies in humans. Any such therapy would involve
the formation of new nephrons that can functionally
integrate with existing nephrons. In this context, the
zebrafish mesonephros may serve as a valuable system
for understanding how the invasive behavior of nascent
nephrons is regulated during the functional integration
of ‘old’ and new tubules.

METHODS

Zebrafish Husbandry

Maintenance of zebrafish was carried out as previ-
ously described (Westerfield, 2007). All experiments
were approved by the Institutional Animal Care and
Use Committee. The Tg(wt1b:GFP) and Tg(lhx1a:
eGFP) transgenic lines were previously reported (Diep
et al., 2011; Perner et al., 2007; Swanhart et al., 2010).

Adult and Larval Zebrafish Experiments

Epifluorescent and bright field images were taken
from a Nikon Eclipse 80i microscope using the Hama-
matsu ORCA-ER camera. Adults: Gentamicin (20 ul of
2 mg/ml) and BrdU (20 ul of 5 mg/ml) were adminis-
tered by intraperitoneal injection (Diep and Davidson,
2011). The kidneys were dissected 4 h after BrdU injec-
tion and processed for histological staining and immu-
nohistochemistry. Larvae: 40 kDa dextran-FITC (1-100
nl of 150 ug/ml) and BrdU (1-100 nl of 5 mg/ml) were
injected near the tail region using glass capillary nee-
dles. Larvae were processed 4 h after BrdU injection for
histological staining and immunohistochemistry.

Whole-Mount In Situ Hybridization

Whole-mount in situ hybridization was performed as
previously described (Diep et al., 2011; Elizondo et al.,
2005). The markers cdh17, gata3, lhx1a, nphs1,
pax2a, slc12a1, slc12a3, slc20a1a, trpm7, and wt1b
have been reported earlier (Bollig et al., 2006; Drum-
mond et al., 1998; O’Brien et al., 2011; Toyama et al.,
1995; Wingert et al., 2007). Anti-sense RNA probes
(digoxigenin-labeled) were synthesized using T7 or SP6
RNA polymerase from Roche Diagnostics.

Histology and Immunohistochemistry

Hematoxylin and eosin: larvae and adult kidneys
were fixed in 4% paraformaldehyde/1% DMSO, embed-
ded in paraffin, sectioned, and stained with hematoxy-
lin and eosin or antibodies against GFP and BrdU (Dana-
Farber/Harvard Cancer Center Pathology Core Facility).

Methylene blue and basic fuchsin: larvae were fixed in
4% paraformaldehyde/1% DMSO, embedded in JB4
resin, sectioned, and stained with methylene blue and
basic fuchsin.
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